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Story Time!

Many good stories start with ‘once upon a time’.

Number Theory is one of these stories.

More precisely, it started from the ancient Greek.

It was influenced heavily by the philosophy of that era.
Interestingly or bizaarely, they thought of the meanings of
numbers a bit too hard. (More like numerology)
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Perfect Numbers and Pythagoras

Pythagoreans equated
the ‘perfect number’ 6 to
marriage, health, and
beauty of integrity and
agreement.
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Perfect Numbers and the Bible (First Origin)

St. Augustine wrote
about perfect numbers
that appearing in the
Bible as follows:

‘Six is a perfect number
in itself, and not because
God created all things in
six days; rather the
converse is true. God
created all things in six
days because the number
six is perfect.’
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Perfect Numbers and the Bible (Second Origin)

Alcuin of York claimed
that the Second Origin is
not perfect because...

‘Eight is not a perfect
number (in fact
deficient) and the
number eight stands for
the eight souls in Noah’s
Ark: Noah, his three
sons and their four wives.
The entire human race
was originated from
these eight souls.’
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Courtesy to Wikipedia and John Voight’s wonderful article
‘Perfect Numbers: An Elementary Introduction’ on the
historical account of perfect numbers.

Please don’t ask me further about the philosophical or biblical
aspects of perfect numbers. I know nothing about these!
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OK, Be Serious Now! Background...

Definition (Perfect Number)

A perfect number is a natural number that is equal to sum of all
of its proper divisors.

Example: 6 = 1 + 2 + 3; 28 = 1 + 2 + 4 + 7 + 14

In other words, σ(n) = 2n, where σ(n) :=
∑

d>0
d |n

d .

Non-example: 8 > 1 + 2 + 4. In fact if σ(n) > 2n, then n is
abundant; if σ(n) < 2n, then n is deficient.

Why writing in σ? Because σ is a multiplicative function,
i.e., if m, n are relatively prime natural numbers, then
σ(mn) = σ(m)σ(n).
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Background—What were known?

Theorem (Euler/Euclid)

A natural number is an even perfect number if and only if it is of
the form 2p−1(2p − 1), where p is a prime such that 2p − 1 is also
a prime.

Computational evidence:

An odd perfect number must be greater than 101500, has at
least 101 prime factors and at least 10 distinct prime factors.
The largest prime factor is greater than 108. (c.f. Math.
Comp. Journal for more!).
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Conjectures: Your Job Opportunity!

Are there infinitely many perfect numbers? (6, 28, 496, 8128,
... ???)

Does odd perfect number exist?

And what are you waiting for ?!
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Another Primitive Notion for Ancient Greek

Definition (Prime)

A natural number greater than 1 is a prime if its positive divisors
are only one and itself.

What were known in the ancient Greek?

Sadly not much... Pretty much you know them all from
primary school (but highly influential!):

1. Sieve of Eratosthenes: How to find primes in a range.
(i.e., Trial Divisions)

2. Fundamental Theorem of Arithmetic: Every natural
number great than 1 can be decomposed as a product of
primes in a unique way, e.g. 15 = 3× 5, 120 = 23 × 3× 5.

3. Euclid’s Theorem There are infinitely many primes:
2,3,5,7,11,13,17,19,...
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Sieve of Eratosthenes
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A Jump to Modern Perspectives—A First Step

We want to understand the distribution of these notions.

A first step is to count them. How much analytic number
theory is about counting!

This is absolutely non-trivial, say for prime its occurence is
somewhat ‘random’ at first sight and there is no easy general
formula. Completely different flavour from the stuff you have
learnt in elementary number theory!

We can count things either roughly or precisely. First
roughly...like probability

Definition (Natural Density)

Let A ⊂ N be a set. Then A is said to be having natural density d
if

lim
x→∞

#(A ∩ [1, x ])

x
= d .
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A Second Step

Say if the set A has density 0, the size of #(A ∩ [1, x ]) can be

≈ x

log x
,

x

(log x)2
, x1/3, log log x , . . .

We want to establish an upper bound to rule out some of its
possibilities: #(A ∩ [1, x ]) ≤ f (x), where f : [1,∞)→ [0,∞)
is some increasing function such that f (x) ≤ x .

Say if #(A ∩ [1, x ]) ≤ x1/2, then it is impossible for
A ∩ [1, x ] to have the size x/(log x), x/(log x)2,..., but it is
possible for it to have size x1/3, log log x ,...
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A Third, Fourth and Fifth Steps—Harder and Harder

Lower Bound: #(A ∩ [1, x ]) ≥ f (x). Obviously harder as you
are proving A has infinitely many elements!

Asymptotics: #(A ∩ [1, x ]) ∼ f (x), i.e.,

lim
x→∞

#(A ∩ [1, x ])

f (x)
= 1.

Statistical behaviour...
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Avenue of Primes

The analytic study of prime numbers began at 18th-19th
century by Euler (1707-1783), Gauss (1777-1855), Chebyshev
(1821-1894), Dirichlet (1805-1859) and Riemann
(1826-1866).

It was more fortunate that in the case of prime there were
more tools to study them, like complex analysis, sieve
methods, circle methods, but not without limitations.
A great achievement in the history in analytic number theory:

Theorem (Prime Number Theorem; Hadamard, de la
Vallee-Poussin 1896)

Denote the number of primes from 1 to x by π(x), i.e.,
π(x) =

∑
p≤x 1. Then we have

π(x) ∼ x

log x
.
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A first attempt—Chebyshev

It is better to give some weight during the counting and
primes love (natural) logarithm. I would say this is one of the
most ingenious part in the development of prime counting!

Definition (von Mangoldt’s Function)

Λ(n) :=

{
log p if n = pk for some k ≥ 1, prime p

0 otherwise
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Well Begun Is Half Done!

Then we want to estimate the Chebyshev’s ψ function, which
is defined as follows:

Definition (Chebyshev’s Prime Seed)

ψ(x) :=
∑
n≤x

Λ(n).
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Why ψ(x) is so nice for Chebyshev? Mathematical
Appreciation...

Really due to several ingenious observations:∑
d |n

Λ(d) = log n.

Then consider S(x) :=
∑

n≤x log n. We compute this in three ways
plus:

Golden Rule in Analytic Number Theory

Analytic number theorists evaluate a sum by expanding into two or
more sums, not to intimate the readers, but to open up
possibilities to switch the order of summation signs.
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Triple counting

1. Stirling’s formula:

S(x) = log[x ]! ≈ x log x − x .

2.

S(x) =
∑
d≤x

Λ(d)
[ x
d

]
3.

S(x) =
∑
m≤x

ψ
( x

m

)
.
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He was then able to prove that there exists constants C1,C2 > 0
such that

C1x < ψ(x) < C2x .

This is equivalent to

C
′
1

x

log x
< π(x) < C

′
2

x

log x
.
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More from Chebyshev...

We can take C1 = 0.92129... and C2 = 1.105548... (where
PNT asserts that C1,C2 can get arbitrarily close to 1).

∑
n≤x

Λ(n)
n ≈ log x and hence many other sums...

If the limit limx→∞
ψ(x)
x exists, then it must be 1. (Strong

evidence for PNT!)

(Betrand’s postulate) There is a prime between x and 2x .

Really remarkable!
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Betrand’s postulate is not a postulate

Bertrand (1822-1900)
made this conjecture in
1845. He was not smart
enough to prove it.

However, it was an era
before calculators or
computers. He
nevertheless verified this
conjecture from 2 to
3× 106 and he was
convinced that it must
be true (and hence
‘postulate’).

My highest respect to his
perserverance !
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Words from the Wise: Take I

Famous analyst J.
Hadamard (1865-1963)
once said ”The shortest
path between two truths
in the real domain passes
through the complex
domain.”

He is one of the first
mathematicians who
gave the complete proof
of the Prime Number
Theorem.
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Riemann’s Big Bang (1859)

On the Number of
Primes Less Than a
Given Magnitude.

His only number theory
paper

Moving from real to
complex in the quest of
prime counting.
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Where is complex number?

Originally analytic number theory really meant the use of
complex analysis to study number theory and it should be
the most celebrated part of a first course in analytic number
theory.

1. It has a nice generating function as Dirichlet’s series:

−−ζ
′
(s)

ζ(s)
=

∞∑
n=1

Λ(n)

ns
for <s > 1,

where ζ(s) is the Riemann zeta function which is defined by

ζ(s) :=
∞∑
n=1

1

ns
for <s > 1.

ζ(2) =
∞∑
n=1

1

n2
=

π2

6
, ζ(4) =

π4

90
, , ζ(6) =

π6

945
, . . . . (Euler)
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Power of Integration by Parts

By thinking of the infinite sum as an integral, we can perform a
‘formal’ integration by parts:

−ζ
′
(s)

ζ(s)
=

∫ ∞
1

1

x s
dψ(x) =

[
ψ(x)

x s

]∞
1

− s

∫ ∞
0

ψ(x)

x s
dx

x

= −s
∫ ∞

0

ψ(x)

x s
dx

x
.

By a standard inversion technique, we have

ψ(x) =
1

2πi

∫
(c)

−ζ ′
(s)

ζ(s)

x s

s
dx ( roughly...)
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Key Points ...

1. ζ(s) 6= 0 on <s = 1.

2. so that the only ‘blow-up’ (i.e., pole) of −ζ ′
(s)/ζ(s) near

s = 1, which corresponds to the main term x in PNT (good!)
and we can ‘capture’ it.

ζ(s) =
1

s − 1
+ γ + A1(s − 1) + · · · .
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More Advantages

2. Its estimate can be converted easily to that for π(x),
trivially by integration by parts. There are other possibilities,
but showing that estimate is equivalent to PNT is very tricky!

3. Deeper: it has a simple explicit formula which relates
ψ(x) to the critical zeros of ζ(s). You can think of it as an
exact form of PNT. From this, we can prove that for
θ ∈ [1/2, 1),

ψ(x) = x + O(xθ+ε)

if and only if
ζ(s) 6= 0 for <s > θ.
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Analytic Number Theory is Always Alive! Riemann
Hypothesis...
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Zeta Before Riemann; Euler’s Vision...

It was not Riemann who first considered the zeta function. In
fact earlier than him, Euler was already able to connect ζ
function to prime counting, just he considered ζ function over
real variable σ > 1.

Theorem (Euler Product; Analytic Form of Fundamental Theorem)

ζ(σ) =
∏
p

(
1− 1

pσ

)−1

for σ > 1.

Euler was able to use it to re-prove there are infinitely many
primes:
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Interlude: Words from the Wise Take 2

Famous computational
number theorist Hendrik
W. Lenstra, Jr. once said
that ”a math talk
without a proof is just
like a movie without love
scene.”

So, it is important to
include at least one proof
(at least by
intimidation!) in every
math talk and here we
go.



History Analytic Elements in Number Theory Story of Primes Perfect Numbers References

Interlude: Words from the Wise Take 2

Famous computational
number theorist Hendrik
W. Lenstra, Jr. once said
that ”a math talk
without a proof is just
like a movie without love
scene.”

So, it is important to
include at least one proof
(at least by
intimidation!) in every
math talk and here we
go.



History Analytic Elements in Number Theory Story of Primes Perfect Numbers References

Euler’s Proof

Suppose there are only finitely many primes. Then RHS of Euler
Product Theorem is a finite product. Letting σ → 1, we have RHS

→
∏

p

(
1− 1

p

)−1
.

Whereas for the LHS,
∑∞

n=1
1
nσ →∞ as σ → 1 as it is well-known

that the harmonic series diverges. Contradiction!
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Euler Take 2

In fact, Euler had done somewhat better than Euclid. He proved∑
p

1
p = ∞ again by using his Product Theorem.

Golden Rule in Analytic Number Theory

When you see product, try to take (natural) logarithm!

Also note that − log(1− x) ≈ x for 0 < x < 1/2. Hence for
σ > 1, we have

log ζ(σ) = −
∑
p

log

(
1− 1

pσ

)
≈
∑
p

1

pσ
.

As σ → 1, ζ(σ)→∞ and so log ζ(σ)→∞. Therefore,
limσ→1

∑
p

1
pσ = ∞. Since 1

p >
1
pσ , we have

∑
p

1
p = ∞. We

are done.
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Final Comments Before Moving On

Dirichlet modeled on Euler’s proof to prove that there are
infinitely many primes in arithmetic progression an + b for
(a, b) = 1. In analog to ζ(s), he introduced the Dirichlet’s
L-function L(s, χ) to select those primes in A.P.

Brun (1885-1978) studied the reciprocal sum of twin primes.
If it diverges, then the well-known Twin Prime Conjecture
would be solved. It turns out that we have a convergent sum
(no conclusion!). However, this led to the birth of sieve
theory, which dominated the additive, analytic number theory
of primes for the past century and we can still see its ripple
now.

What is sieve theory? Basically we want to make the Sieve of
Eratosthenes ‘usable’ in giving good estimates.
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What are primes?

Algebra: Prime ideal—Prime ideal theorem

Function field: irreducible polynomials

Hyperbolic geometry: primitive hyperbolic conjugacy class
(geodesic cycle)—Selberg’s Prime Geodesic Theorem,
Selberg’s Zeta Function and Trace Formula

Graph theory—Ihara zeta function

Many more...
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A. Granville, Primes in Intervals of Bounded Length

Y. Motohashi, The Twin Prime Conjecture

K. Soundararajan, Small Gaps Between Prime Numbers: The
Work of Goldston-Pintz-Yildirim

J. Maynard, Small Gaps Between Primes

K.Ford, Sieve Lecture Notes
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Now Comes to Perfect Numbers

The analytic study of perfect numbers was somewhat less
fortunate, but not without progress.

Even counting even perfect number is hard: we are counting
primes p with an extra, difficult condition 2p − 1 is also prime.

One has to admit that the complex analytic techniques are
not flexible enough and are not able to directly attack the
counting problems of many arithmetic notions. (Generating
functions?!)
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A Bit of Notations...

Big O-notations are used throughout literature in analytic
number theory. It simply means we don’t care about the
constant multiple: we write f (x) = O(g(x)) or f (x)� g(x)
if there exists a constant C > 0 such that |f (x)| ≤ C |g(x)|
for large x .

o(1) denotes a quantity tends to 0.
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Analytic Progress (Courtesy of P. Pollack)

Let V (x) be the number of perfect numbers up to x . As x →∞,

(Davenport 1933) The set of perfect numbers has density 0.

(Volkmann 1955) V (x) = O(x5/6)

(Hornfeck 1955) V (x) = O(x1/2)

(Kanold 1956) V (x) = o(x1/2)

(Erdős 1956) V (x) = O(x1/2−δ)

(Kanold 1957) V (x) = O(x1/4 log x
log log x )

(Hornfeck and Wirsing 1957) V (x) = O(xε)

(Wirsing 1959) V (x) ≤ xW / log log x

Conjecture

As x →∞,

V (x) ∼ eγ

log 2
log log x
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This quantitative conjecture also suggests why counting
perfect numbers is hard: it asymptotic order is like log log x ,
which is very very very... slow growing, showing that perfect
numbers are very very very... rare.

For prime numbers, its asymptotic order is x/ log x . Although
it has density 0 (Alright it is rare to have primes), it is still
much more abundant than perfect numbers!
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How to Approach These Problems Then? Back to Basic...

Erdös (1913-1996) is one
of the pioneers to
approach distribution
problems of many
arithmetic notions by
very diverse, beautiful
elementary methods and
incredible observations.
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What had Erdös looked at?

1. Perfect numbers
2. Carmichael numbers
3. Normal orders
4. Image of Euler’s totient functions
5. How often does σ(m) = φ(n), φ(n) = φ(n + k),
τ(n) = τ(n + k)?
6. Amicable numbers
7. Sociable numbers
8. Multiplication table
The list goes on...
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Erdös’ idea:

To give a non-trivial upper bound, you don’t have to capture
exactly the numbers you want to count, but instead essential
features they satisfy.

Of course, you will over-count, but nonetheless it is easier to
count and is non-trivial (surprising others)!

For lower bound, most of the time it is harder as you need
some good construction of the numbers you want to count.
Usually need lots of ingenuity...
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Example: Work of Pomerance

In 1975, Pomerance
studied the distribution
of S`,k = {n ∈ N :
σ(n) = `n + k}, where
`, k ∈ Z, ` ≥ 2,

which
generalizes the following
notions:

S2,0 (Perfect numbers),

S`,0 (`-multiply perfect
numbers),

S2,1 (Quasiperfect
numbers),

S2,−1 (Almost perfect
numbers)
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Theorem (Pomerance 1975)

Denote S`,k ∩ [1, x ] by S`,k(x). As x →∞,

#S`,k(x)�k
x

log x

In particular, S`,k must have density 0.

Clearly σ(n) = `n + k implies σ(n) ≡ k (mod n).

To obtain upper bound for #S`,k(x), Pomerance instead
counted n ≤ x such that σ(n) ≡ k (mod n).

Although we lose arithmetic information by reducing (mod n),
this makes the counting much easier. Of course the bound
may not be sharp.
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Definition (Regular/ Sporadic)

n is said to be a regular solution of σ(n) ≡ k (mod n) if n = pm,
with p being a prime, p - m, m | σ(m), and σ(m) = k. Otherwise
n is said to be a sporadic solution.

It is clear to see that regular solutions are actually solutions!

Pomerance (1975) observed that we only need to count
regular solutions!
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Pomerance’s Theorem

Theorem (Pomerance 1975)

The number of sporadic solutions of the congruence
σ(n) ≡ k (mod n) is Ok(x exp(−β(log x log log x)1/2)) as x →∞
for any β < 1/

√
2.

Indeed if n ∈ S`,k and n is of the form of regular solutions,
then

(1 + p)k = σ(p)σ(m) = σ(n) = `pm + k.

This implies σ(m) = k = `m. So, m = k/` is an `-perfect
number.
So if k/` is `-perfect, then we have � x/ log x many regular
solutions up to x by the Prime Number Theorem. The
number of sporadic solutions up to x is negligible.
If k/` is not `-perfect, then there is no regular solution. The
upper bound for S`,k(x) is given by the sporadic bound.
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Bias...

First observed
computationally by
Klyve-Davis-Kraght in
their Involve article, but
cannot explain why.
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A Lemma from Us

Lemma (Cohen-Cordwell-Epstein-K.-Lott-Miller)

For fixed integers k , ` with ` ≥ 2, as x →∞, we have
1. If k/` is an `-perfect number, then

#S(`, k ; x) ∼ `

k

x

log x
.

2. If k/` is not an `-perfect number, then

#S(`, k ; x) ≤ x1/2+o(1).

In the case of ` is even and k is odd, the upper bound can be
replaced by |k |x1/4+o(1).
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Pomerance Take Two— uniformity and better bound

Theorem (Pollack-Shevelev 2012)

Uniformly for |k | < x2/3, the number of sporadic solutions of the
congruence σ(n) ≡ k (mod n) up to x is at most x2/3+o(1), as
x →∞.

Theorem (Anavi-Pollack-Pomerance 2012)

Uniformly for |k | ≤ x1/4, the number of sporadic solutions of the
congruence σ(n) ≡ k (mod n) up to x is at most x1/2+o(1), as
x →∞.
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Fresh from the Oven...

Definition (Modified Regular/ Sporadic)

n is said to be a regular solution of σ(n) = `n + k if n = pm,
with p being a prime, p - m, σ(m) = `m, and σ(m) = k.
Otherwise n is said to be a sporadic solution.

Theorem (Pollack-Pomerance-Thompson 2017)

Let `, k be integers with ` > 0. Then the number of sporadic
solutions n ≤ x of σ(n) = `n + k is at most x3/5+o`(1) as
x →∞, uniformly in k .

Much better range in terms of k, but loses uniformity in ` and
worse upper bound. (Trade-off!).
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What we want to look at?

Definition 4.1 ((`; k)-within-perfect numbers)

Let ` > 1 be a real number, k : [1,∞)→ R be an increasing,
positive function. n is said to be (`; k)-within-perfect if
|σ(n)− `n| < k(n). We denote the set of (`; k)-within-perfect
numbers by W (`; k) and W (`; k; x) := W (`; k) ∩ [1, x ].

Wolke and Harman studied in terms of a Diophantine
approximation.

They showed that for any real ` ≥ 1 and for any
c ∈ (0.525, 1), there exists infinitely many natural numbers
that are (`; y c)-within-perfect.
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Distribution

Definition (Distribution function)

An arithmetic function f : N→ R has a distribution function if
there exists an increasing, continuous function F : (a, b)→ R such
that

lim
x→∞

1

x
#{n ≤ x : f (n) ≤ u} = F (u).
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In terms of asymptotic densities...Phase Transition!

Theorem(Cohen-Cordwell-Epstein-K.-Lott-Miller)

Let D(·) denote the distribution function of σ(n)/n. (by
Davenport 1933)

If k(n) = o(n), then the set of (`; k)-within-perfect numbers
has density 0.

If k(n) ∼ cn for some c > 0, then the set of
(`; k)-within-perfect numbers has density D(`+ c)−D(`− c).

If k(n) � n, then the set of (`; k)-within-perfect numbers has
positive lower density and upper density strictly less than 1.

If n = o(k(n)), then the set of (`; k)-within-perfect numbers
has density 1.
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Better Understanding?

For the sublinear regime, from the above theorem we only
know the density of (`; k)-within-perfect numbers is 0.

The next step is to find an explicit upper bound for the
sublinear regime?
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Theorem(Cohen-Cordwell-Epstein-K.-Lott-Miller)

Suppose k(y) ≤ y ε for large y and k is a positive increasing
unbounded function. Consider the following set

Σ :=

{
σ(m)

m
: m ≥ 1

}
⊂ Q.

If ` ∈ Σ, then for ε ∈ (0, 1/3) we have

lim
x→∞

#W (`; k ; x)

x/ log x
=

∑
σ(m) = `m

1

m

If ` ∈ (Q∩ [1,∞)) \Σ , ` = a/b, a > b ≥ 1, a, b are coprime
integers and ε ∈ (0, 1/3), then we have the following upper
bound

#W (`; k ; x) = O(max{a, b3}xmin{3/4, ε+2/3}+o(1)).
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Sketch of Proof

Assume `-perfect numbers exist and k(y) ≤ y ε for
ε ∈ (0, 1/3).

Showing

lim inf
x→∞

#W (`; k ; x)

x/ log x
≥

∑
σ(m)=`m

1

m

is a direct consequence of the Prime Number Theorem and
our lemma.

Now we want to show

lim sup
x→∞

#W (`; k; x)

x/ log x
≤

∑
σ(m)=`m

1

m
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It suffices to consider k(y) = y ε. Fix a large x and let n ≤ x
satisfy |σ(n)− `n| < xε.

Rewrite this Diophantine inequality as a collection of
Diophantine equations over certain range, i.e.,

σ(n)− `n = k , where k ∈ Z, |k | < xε.

In particular, we have a collection of congruences in the form
of regular solutions:

σ(n) ≡ k (mod n), where k ∈ Z, |k | < xε.
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Recall from Pomerance’s Theorems

n is a regular solution if n is of the form

n = pm where p is prime, p - m, m | σ(m), and σ(m) = k (∗)
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We can make the following assumptions one by one:

n is in the form of (*).

By Pomerance’s theorem, the number of elements of
W (`; k ; x) NOT of the form (*) is at most

2xεx2/3+o(1) = 2x2/3+ε+o(1),

which is negligible (compared with x/ log x).
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Theorem 4.2 (Hornfeck-Wirsing)

The number of multiply perfect numbers less than or equal to x is
at most xo(1) as x →∞.
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p > xε in (*).

By the Prime Number Theorem and Hornfeck-Wirsing
theorem, the number of n ≤ x of the form (*) with p ≤ xε is
at most

xε

log xε
xo(1) �ε

xε+o(1)

log x
,

which is again negligible.
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σ(m)/m ≤ ` in (*).

If σ(m) = rm for some r ≥ `+ 1, then

σ(n)− `n = σ(p)σ(m)− `pm
= (1 + p)(rm)− `pm
= m(r + p(r − `))

≥ p > xε.

Contradiction!



History Analytic Elements in Number Theory Story of Primes Perfect Numbers References

σ(m)/m = ` in (*).

Consider the case where σ(m) = rm with 2 ≤ r ≤ `− 1 and
p > xε. Note that r + p(r − `) ≥ 0 implies p < r ≤ `− 1. For
x > (2`)1/ε, we have a contradiction. Now suppose that
r + p(r − `) < 0. Then |σ(n)− `n| < xε if and only if
m[(`− r)p − r ] < xε. By Merten’s estimate, the number of
such n is

≤
∑

2≤r≤`−1

∑
xε<p≤x

xε

(`− r)p − r

≤ (`− 2)xε
∑

xε<p≤x

1

p − `+ 1

≤ 2(`− 2)xε
∑

xε<p≤x

1

p

� (`− 2)xε log log x .
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Thus, we only have to work with

n = pm where p is prime, p - m, σ(m) = `m (**)

Next we estimate the contribution from (**).

By partial summation and Hornfeck-Wirsing Theorem, we have for
any z ≥ 1,∑

m≤z
σ(m) = `m

logm

m
=

∫ z

1

log t

t
dP(t) =

log z

z1−o(1)
+

∫ z

1

log t

t2−o(1)
dt � 1,

where P(z) = #{m ≤ z : σ(m) = `m}.
From these we can see that both of the series∑

σ(m) = `m

logm

m
,

∑
σ(m) = `m

1

m

converge.
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For m ≤ xε, since

0 <
logm

log x
≤ ε < 1,

we have (
1− logm

log x

)−1

= 1 + Oε

(
logm

log x

)
.
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Let c be any constant greater than 1. By the Prime Number
Theorem, there exists x0 = x0(c) > 0 such that for x ≥ x0, we have

π(x) < c
x

log x
.

Then for x ≥ max{x1/(1−ε)
0 , `2}, we have

#W (`; k ; x) ≤
∑
m≤xε

σ(m)=`m

π(x/m)

< c
∑
m≤xε

σ(m)=`m

x/m

log(x/m)

= c
x

log x

∑
m≤xε

σ(m)=`m

1

m
+ Oε

(
cx

(log x)2

∑
m≤xε

σ(m)=`m

logm

m

)

< c
x

log x

∑
σ(m)=`m

1

m
+ Oε

(
cx

(log x)2

)
.
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Therefore,

lim sup
x→∞

#W (`; k; x)

x/ log x
≤ c

∑
σ(m)=`m

1

m
.

Since the choice of constant c > 1 is arbitrary, we have

lim sup
x→∞

#W (`; k; x)

x/ log x
≤

∑
σ(m)=`m

1

m
.

This completes the proof.
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Moments of Thoughts

Erdös’ philosophy: We don’t have to count everything. We
should figure out where is the major contribution and count
(by making more and more assumptions), for the rests simply
use trivial bounds.

Divide-and-conquer argument

Of course, our argument is just a simple one! I encourage you
to read the papers by Erdös, Pomerance, Pollack etc. to feel
their magic and ingenuity.

Pollack-Pomerance-Thompson’s new result is an interesting
one and it appears after our paper is submitted for
publication. But unfortunately their result lacks uniformity in
` and hence cannot be applied to the theorem we just proved.
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Another Notion that We Studied

Definition 4.3 (k-near-perfect number)

Let k ∈ N be fixed. n ∈ N is k-near-perfect if it is the sum of all of
its proper divisors with at most k exceptions.

For example: Perfect numbers

12 is a 1-near-perfect number: 12 = 1 + 2 + 3 + 6, while all of
its proper divisors are 1, 2, 3, 4, 6.

30 is a 4-near-perfect number: 30 = 5 + 10 + 15, while all of
its proper divisors are 1, 2, 3, 5, 6, 10, 15
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Known result

Theorem 4.4 (Pollack-Shevelev 2012)

Let k ∈ N and N(k ; x) denotes the set of all k-near-perfect
numbers up to x. Then as x →∞,

#N(k; x) �k
x

log x
(log log x)Ok (1),

where Ok(1) is between (log k)/(log 2)− 3 and k − 1.
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Sketch of Pollack-Shevelev’s Proof

Denote by N(k; x) the set of all k-near-perfect numbers up to x

and let y = x
1

log log x .

They partition N(k ; x) into

N1(k; x) := {n ∈ N(k ; x) : n is y -smooth}
N2(k; x) := {n ∈ N(k ; x) : P+(n) > y and P+(n)2|n}
N3(k; x) := {n ∈ N(k ; x) : P+(n) > y and P+(n)||n},

where n is y -smooth if all of its prime factors are at most y and
P+(n) is the largest prime factor of n.
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N1(k ; x) and N2(k ; x)

Theorem 4.5

Let u = log x/ log y and Φ(x , y) be the set of all y -smooth
numbers up to x. Then uniformly for (log x)3 ≤ y ≤ x, we have

#Φ(x , y) = x exp (−u log u + O(u log log u)) .

By the smooth number bound, we have

#N1(k ; x) ≤ Φ(x , y)� x exp(−(log2 x)(log3 x) + O(log2 log4 x)),

which is negligible.
We also have the following trivial estimate:

#N2(k ; x) ≤
∑
p>y

x

p2
� x

y
= x1−1/ log log x = x exp(− log x/ log log x),

which is negligible.
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N3(k ; x)

For n ∈ N3(k ; x), we can write

n = pm, where p = P+(n) > max{y ,P+(m)}.

Further partition N3(k ; x) according to τ(m) ≤ k and τ(m) > k ,
where τ(m) is the number of positive divisors of m.
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A moment of thought

By observing trivially that
6p1 · · · ps = p1 · · · ps + 2p1 · · · ps + 3p1 · · · ps is
(2s+2 − 4)-near-perfect, we know that

#N(k ; x)�k
x

log x
(log log x)b

log(k+4)
log 2

c−3
,

which is large enough. This suggests that the partition in
terms of smooth number is a good way to count in this case.

However, the upper bound x
log x (log log x)k−1 essentially

comes from the trivial count of

#N
′
3(k ; x) ={n ≤ x : n = pm, p = P+(n) > max{y ,P+(m)},

τ(m) ≤ k , n is k-near-perfect}.

in which we only capture the information τ(m) ≤ k.
Therefore, the upper bound should be rough.
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The reason we want τ(m) > k is to ensure

σ(m)−
∑

d∈D(1)
n

d > 0.

We partition N3(k ; x) differently from Pollack and Shevelev:

N
(1)
3 (k ; x) := {n ∈ N3(k ; x) : all of the positive divisors of

m are redundant divisors of n},

N
(2)
3 (k ; x) := N3(k ; x) \ N(1)

3 (k; x).
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This leads to

Theorem (Cohen-Cordwell-Epstein-K.-Lott-Miller)

For 4 ≤ k ≤ 9, we have

#N(k ; x) ∼ ck
x

log x

as x →∞, where

c4 = c5 =
1

6
, c6 =

17

84
, c7 = c8 =

493

1260
, c9 =

179017

360360
.
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The new partition is advantageous for the general case. We can
handle the general case by doing induction and from the second
step onwards, we use sieve estimates rather than smooth number
estimates. By a more elaborate argument, we have

Theorem (Cohen-Cordwell-Epstein-K.-Lott-Miller)

For k ≥ 4, as x →∞

#N(k; x) �k
x

log x
(log log x)j0(k),

where j0(k) is the smallest integer such that

j0(k) >
log(k + 1)

log 2
− log 5

log 2
.

Remark: log 5
log 2 ≈ 2.3219.
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Theorem (Cohen-Cordwell-Epstein-K.-Lott-Miller)

Let f be the following function defined for integers k ≥ 4.

f (k) =

⌊
log(k + 4)

log 2

⌋
− 3.

For integer k ∈ [4,∞)Z \ ({10, 11} ∪ {2s+2 − i : s ≥ 3, i = 5, 6}),
we have

#N(k; x) �k
x

log x
(log log x)f (k).
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More Results—Generalizations

We study the following natural generalization:

Definition 4.6 (k-near-perfect number)

Let k : [1,∞)→ R be a positive and increasing function. n ∈ N is
said to be a k-near-perfect number if n is a sum of all of its proper
divisors with at most k(n) exceptions.

Refer to our paper: On within-perfectness and
near-perfectness, https://arxiv.org/pdf/1610.04253.pdf.
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Thank you and Questions?
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Far-reaching conjecture (even the lower bound)! We think
this is the correct one based on some probabilistic heuristics:

1. There is no odd perfect number
2. (Cramer’s model) The ‘probability’ of a random integer n
being a prime is 1/ log n. (Based on PNT)
3. (Kubilius’ model) The ‘probability’ of a random integer to
be divisible by a prime p is 1/p.

We think of the ‘events’ of two random integers ‘being a
prime’ are independent. The same for divisibility. (Of course,
this is not quite the case. We will do suitable ‘corrections’. )
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